TS spé

Fiche sur suites de matrices

I.

Soit A un matrice carrée d'ordre *m* (c'est-à-dire à *m* lignes et *m* colonnes).

On considère la suite (X_n) de matrices colonnes à m lignes définie sur \mathbb{N} par :

- son premier terme X₀ qui est une matrice colonne à m lignes ;
- la relation de récurrence $\forall n \in \mathbb{N} \ X_{n+1} = AX_n$.

On a alors $\forall n \in \mathbb{N} \ X_n = A^n X_0$ (expression du terme général).

Il est important de connaître la relation suivante :

pour tout couple (n; m) d'entiers naturels tels que $n \ge m$ $X_n = A^{n-m}X_m$

Lorsque l'on prend m = 1, la relation précédente donne : $\forall n \in \mathbb{N}^* \ X_n = A^{n-1}X_1$

Remarques:

- Grâce à la calculatrice, on peut calculer les premiers termes de la suite (commande « rép » ou programme).
- Lorsque l'on connaît les coefficients de A^n en fonction de n, on en déduit l'expression de X_n .
- Dans certains problèmes on étudiera la limite de la suite (X_).

II.

Soit A un matrice carrée d'ordre m (c'est-à-dire à m lignes et m colonnes) et B un matrice colonne à m lignes.

On considère la suite (X_n) de matrices colonnes à m lignes définie sur \mathbb{N} par :

- son premier terme X₀ qui est une matrice colonne à m lignes ;
- la relation de récurrence $\forall n \in \mathbb{N} \ X_{n+1} = AX_n + B$.

On suppose qu'il existe une matrice colonne S à m lignes telle que S = AS + B.

Pour tout entier naturel n, on pose $U_n = X_n - S$.

On vérifie que $\forall n \in \mathbb{N} \ U_{n+1} = AU_n$.

Donc $\forall n \in \mathbb{N}$ $U_n = A^n U_0$.

D'où $\forall n \in \mathbb{N} \quad X_n = A^n (X_0 - S) + S$

III. Adaptation du cas du I à des matrices lignes

Soit A un matrice carrée d'ordre *m* (c'est-à-dire à *m* lignes et *m* colonnes).

On considère la suite (X_n) de matrices lignes à m colonnes définie sur \mathbb{N} par :

- son premier terme X_0 qui est une matrice ligne à m colonnes;
- la relation de récurrence $\forall n \in \mathbb{N} \ X_{n+1} = X_n A$.

On a alors $\forall n \in \mathbb{N}$ $X_n = X_0 A^n$ (expression du terme général).

Il est important de connaître la relation suivante :

pour tout couple (n; m) d'entiers naturels tels que $n \ge m$ $X_n = X_m A^{n-m}$

Lorsque l'on prend m = 1, la relation précédente donne : $\forall n \in \mathbb{N}^* \quad X_n = X_1 A^{n-1}$