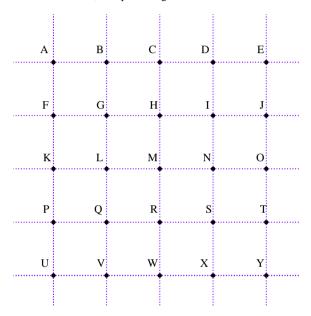
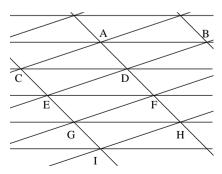
Exercices sur les vecteurs du plan

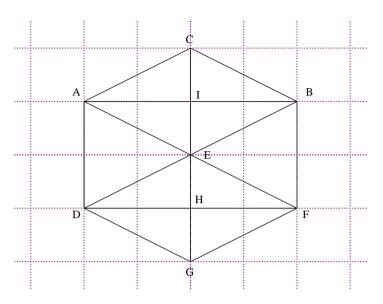
- 1 En observant la figure ci-dessous constituée d'un quadrillage régulier, compléter les phrases ci-dessous :
- a. Par la translation qui transforme A en D, L a pour image
- b. Par la translation qui transforme C en L, a pour image M.
- c. Par la translation qui transforme F en, C a pour image T.
- d. Par la translation qui transforme A en H, H a pour image
- e. Par la translation qui transforme B en V, a pour image X.
- f. Par la translation qui transforme en R, H a pour image T.
- g. Par la translation qui transforme I en A, S a pour image
- h. Par la translation qui transforme D en B, M a pour image



- 2 Déterminer l'image de chacun des points A et E par la translation de vecteur :
- a) \overrightarrow{AB}
- b) \overrightarrow{GI}
- c) DH



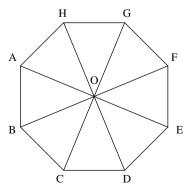
3 On considère l'hexagone ACBFGD représenté sur la figure ci-dessous.



Compléter le tableau suivant :

L'image de	par la translation de vecteur	est le point
A	DE	
	$\overrightarrow{\text{GH}}$	С
Н		F
В		C

4 Soit ABCDEFGH un octogone régulier de centre O.



Compléter le tableau ci-dessous :

Les vecteurs	\overrightarrow{GH} et \overrightarrow{BC}	\overrightarrow{AE} et \overrightarrow{BD}	FD et HB	\overrightarrow{AH} et \overrightarrow{ED}
ont la même direction				
ont le même sens				
ont la même norme				

- 5 Soit ABCD et BFEC deux parallélogrammes ayant le côté [BC] en commun. Démontrer en utilisant les vecteurs que le quadrilatère AFED est un parallélogramme.
- **6** En utilisant la relation de Chasles, recopier et compléter les égalités suivantes :

a. $\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{B} \cdot$	b. $\overrightarrow{CD} = \overrightarrow{\bullet A} + \overrightarrow{A} \overrightarrow{\bullet}$	c. $\overrightarrow{MN} = \overrightarrow{P} + \overrightarrow{\bullet}$	d. $\overrightarrow{\bullet E} = \overrightarrow{F} \cdot + \overrightarrow{G} \cdot$
e. $\overrightarrow{\mathbf{H}} \cdot = \overrightarrow{\bullet} + \overrightarrow{\mathbf{I}}\overrightarrow{\mathbf{J}}$	$f. \ \overrightarrow{\bullet \bullet} = \overrightarrow{JK} + \overrightarrow{\bullet M}$	g. $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{\bullet}$	h. $\overrightarrow{AB} = \overrightarrow{\bullet C} + \overrightarrow{\bullet D} + \overrightarrow{\bullet \bullet}$

7 Soit A, B, C, D et E cinq points quelconques.

Démontrer que : $\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{CE} + \overrightarrow{DA} + \overrightarrow{EB} = \overrightarrow{0}$.

8 Soit ABCD un parallélogramme.

Démontrer que :

- a) $\overrightarrow{BA} + \overrightarrow{DA} = \overrightarrow{CA}$
- b) $\overrightarrow{AD} + \overrightarrow{CB} = \overrightarrow{0}$
- c) $\overrightarrow{DC} + \overrightarrow{BC} = \overrightarrow{AC}$
- 9 Soit A, B, C, D quatre points quelconques du plan.

Ecrire plus simplement : $\vec{u} = \overrightarrow{AB} + \overrightarrow{DC} - \overrightarrow{AC} + \overrightarrow{BD}$.

10 Ecrire le plus simplement possible les vecteurs :

1°)
$$\vec{u} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$\vec{v} = \overrightarrow{AB} - \overrightarrow{AC}$$

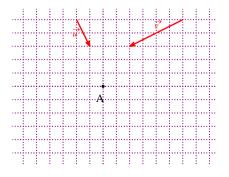
$$\overrightarrow{w} = \overrightarrow{MA} - \overrightarrow{MF} + \overrightarrow{FA}$$

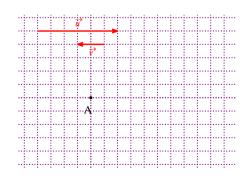
$$\vec{u} = \overrightarrow{AB} + \overrightarrow{DC} - \overrightarrow{AC} + \overrightarrow{BC}$$

$$\vec{v} = \overrightarrow{MN} + \overrightarrow{PM} + \overrightarrow{NP}$$

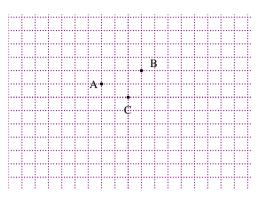
$$\overrightarrow{w} = \overrightarrow{AP} - \overrightarrow{AQ} + \overrightarrow{EQ} - \overrightarrow{EP}$$

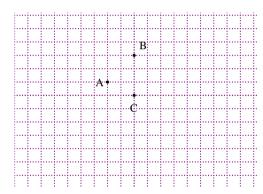
Reproduire chacune des figures données et construire les points M et N définis par les égalités : $\overrightarrow{AM} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{AN} = \overrightarrow{u} - \overrightarrow{v}$.





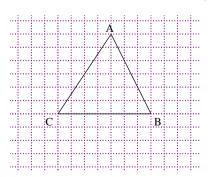
Reproduire la figure donnée ci-dessous et construire les points M et N définis par les égalités vectorielles : $\overrightarrow{AM} = \overrightarrow{BA} - \overrightarrow{CA}$ et $\overrightarrow{AN} = \overrightarrow{CB} + \overrightarrow{AB}$.





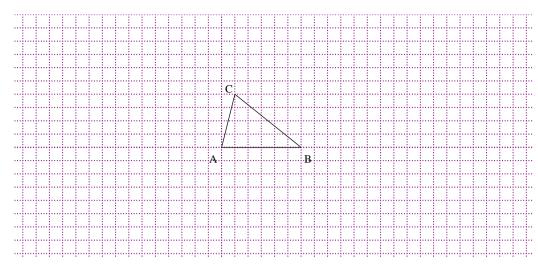
14 Soit ABC un triangle.

Reproduire la figure ci-dessous et construire les points E et F tels que : $\overrightarrow{AE} = \frac{4}{3} \overrightarrow{AB}$ et $\overrightarrow{BF} = -\frac{1}{2} \overrightarrow{AC}$.



15 Soit ABC un triangle.

Reproduire la figure ci-dessous et construire les points M et N tels que : $\overrightarrow{AM} = 3\overrightarrow{AB} + 2\overrightarrow{AC}$ et $\overrightarrow{AN} = -2\overrightarrow{AC} + \overrightarrow{AB}$.



16 Soit ABC un triangle quelconque.

1°) Construire les points M et N tels que $\overrightarrow{BM} = -\frac{1}{2}\overrightarrow{AC} + 2\overrightarrow{BC}$ et $\overrightarrow{NC} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$.

Pour la figure, on prendra la droite (AB) « horizontale », A à gauche de B et C « au-dessus » de (AB).

2°) Démontrer que C est le milieu du segment [MN].

17 Soit ABC un triangle quelconque.

On note A' le milieu de [BC], B' le milieu de [AC] et C' le milieu de [BA].

Faire une figure codée.

Calculer la somme vectorielle $\overrightarrow{AA}' + \overrightarrow{BB}' + \overrightarrow{CC}'$.

18 Soit A, B, C, D quatre points quelconques du plan.

On note I et J les milieux respectifs des segments [AB] et [CD].

Démontrer que l'on a : $\overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{IJ}$.

19 Soit A et B deux points distincts du plan. On note M le point défini par $2\overrightarrow{MA} + 3\overrightarrow{MB} = \overrightarrow{0}$ (1).

1°) Exprimer \overrightarrow{AM} en fonction de \overrightarrow{AB} .

Indication : remplacer \overrightarrow{MB} par $\overrightarrow{MA} + \overrightarrow{AB}$ dans l'égalité (1).

2°) Construire M.

20 Soit ABC un triangle quelconque.

- 1°) Construire les points E et F définis par les égalités vectorielles : $\overrightarrow{AE} = \frac{1}{2}\overrightarrow{BA}$ et $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{BC} \frac{1}{2}\overrightarrow{AC}$.
- 2°) Démontrer que (EF) et (BC) sont parallèles.

21 Soit ABC un triangle quelconque.

On note M et N les points définis par les égalités vectorielles : $\overrightarrow{AM} = \frac{3}{4} \overrightarrow{AB}$ et $\overrightarrow{AN} = \frac{3}{4} \overrightarrow{AC}$.

Démontrer que les droites (MN) et (BC) sont parallèles en utilisant les vecteurs.

22 Soit ABC un triangle quelconque.

On considère les points I, J, K définis par les égalités vectorielles $\overrightarrow{BI} = \frac{3}{2} \overrightarrow{BC}$, $\overrightarrow{CJ} = \frac{1}{3} \overrightarrow{CA}$ et $\overrightarrow{AK} = \frac{2}{5} \overrightarrow{AB}$.

Faire une figure.

1°) Exprimer le vecteur \overrightarrow{IJ} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} (il s'agit d'obtenir une égalité de la forme $\overrightarrow{IJ} = ... \overrightarrow{AB} + ... \overrightarrow{AC}$).

- 2°) Exprimer le vecteur \overrightarrow{IK} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 3°) Démontrer à l'aide des questions précédentes que les points I, J, K sont alignés.

23 Soit ABCD un parallélogramme.

On considère les points I, J, K, L définis par les égalités vectorielles :

$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$$
 (1), $\overrightarrow{BJ} = \frac{2}{3}\overrightarrow{BC}$ (2), $\overrightarrow{CK} = \frac{2}{3}\overrightarrow{CD}$ (3), $\overrightarrow{DL} = \frac{2}{3}\overrightarrow{DA}$ (4).

Faire une figure (on prendra la droite (AB) « horizontale », A à gauche de B, C et D « au-dessus » de (AB), l'angle \widehat{BAD} aigu).

Ecrire les hypothèses.

Démontrer que IJKL est un parallélogramme.

24 Soit ABCD un parallélogramme.

On note M et N les points définis par les égalités : $\overrightarrow{CM} = 2\overrightarrow{AB}$ et $\overrightarrow{CN} = \frac{1}{3}\overrightarrow{AD}$.

Démontrer que les droites (AM) et (DN) sont parallèles.

Corrigé des exercices

1 Parallélogramme et translation (exercice de base)

Connaissances nécessaires : translation.

a. O	b. D	c. W	d. O	e. D	f. F	g. K	h. K
------	------	------	------	------	------	------	------

- a. Par la translation qui transforme A en D, L a pour image O.
- b. Par la translation qui transforme C en L, D a pour image M.
- c. Par la translation qui transforme F en W, C a pour image T.
- d. Par la translation qui transforme A en H, H a pour image O.
- e. Par la translation qui transforme B en V, D a pour image X.
- f. Par la translation qui transforme F en R, H a pour image T.
- g. Par la translation qui transforme I en A, S a pour image K.
- h. Par la translation qui transforme D en B, M a pour image K.

2 Images de points par une translation

- a) L'image du point A par la translation de vecteur \overrightarrow{AB} est B.
- L'image du point A par la translation de vecteur \overrightarrow{GI} est D.
- L'image du point A par la translation de vecteur \overrightarrow{DH} est \overrightarrow{F} .
- b) L'image du point E par la translation de vecteur \overrightarrow{AB} est \overrightarrow{F} .
- L'image du point E par la translation de vecteur \overrightarrow{GI} est G.
- L'image du point E par la translation de vecteur \overrightarrow{DH} est I.

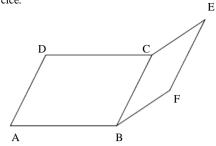
3 Tableau:

L'image de	par la translation de vecteur	est le point
A	DE	C
I	GH	С
Н	$\overrightarrow{ ext{IB}}$	F
В	FE	С

4 Cet exercice a pour but de revoir les 3 caractéristiques d'un vecteur défini par 2 points distincts. Il importe de ne pas confondre « sens » et « direction » d'un vecteur.

Les vecteurs	GH et BC	\overrightarrow{AE} et \overrightarrow{BD}	FD et HB	AH et ED
ont la même direction		×	×	×
ont le même sens		×	×	
ont la même norme	×		×	×

5 On commence par faire une figure. On écrit les hypothèses de l'exercice.



Démontrons que le quadrilatère AFED est un parallélogramme.

ABCD est un parallélogramme donc $\overrightarrow{AD} = \overrightarrow{BC}$.

BFEC est un parallélogramme donc $\overrightarrow{BC} = \overrightarrow{FE}$.

On a donc : $\overrightarrow{AD} = \overrightarrow{BC} = \overrightarrow{FE}$.

Plus particulièrement, $\overrightarrow{AD} = \overrightarrow{FE}$.

On en déduit que le quadrilatère AFED est un parallélogramme.

6 Utilisation de la relation de Chasles

a. $\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{BJ}$	b. $\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$	c. $\overrightarrow{MN} = \overrightarrow{MP} + \overrightarrow{PN}$	d. $\overrightarrow{FE} = \overrightarrow{FG} + \overrightarrow{GE}$
e. $\overrightarrow{HJ} = \overrightarrow{HI} + \overrightarrow{IJ}$	f. $\overrightarrow{JM} = \overrightarrow{JK} + \overrightarrow{KM}$	g. $\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{CD}$	h. $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DB}$

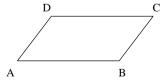
7 A, B, C, D, E sont cinq points quelconques.

 \overrightarrow{D} émontrons que : $\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{CE} + \overrightarrow{DA} + \overrightarrow{EB} = \overrightarrow{0}$.

$$\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{CE} + \overrightarrow{DA} + \overrightarrow{EB} = \overrightarrow{AC} + \overrightarrow{CE} + \overrightarrow{EB} + \overrightarrow{BD} + \overrightarrow{DA}$$

= \overrightarrow{AA}
= $\overrightarrow{0}$

8 ABCD parallélogramme



a) Démontrons que $\overrightarrow{BA} + \overrightarrow{DA} = \overrightarrow{CA}$.

ABCD est un parallélogramme donc $\overrightarrow{BA} = \overrightarrow{CD}$.

$$\overrightarrow{BA} + \overrightarrow{DA} = \overrightarrow{CD} + \overrightarrow{DA}$$

$$= \overrightarrow{CA}$$

b) Démontrons que $\overrightarrow{AD} + \overrightarrow{CB} = \overrightarrow{0}$.

ABCD est un parallélogramme donc $\overrightarrow{AD} = \overrightarrow{BC}$.

$$\overrightarrow{AD} + \overrightarrow{CB} = \overrightarrow{BC} + \overrightarrow{CB}$$
$$= \overrightarrow{0}$$

c) Démontrons que $\overrightarrow{DC} + \overrightarrow{BC} = \overrightarrow{AC}$.

ABCD est un parallélogramme donc $\overrightarrow{DC} = \overrightarrow{AB}$.

$$\overrightarrow{DC} + \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{BC}$$
$$= \overrightarrow{AC}$$

9 A, B, C, D points quelconques du plan.

$$\vec{u} = \overrightarrow{AB} + \overrightarrow{DC} - \overrightarrow{AC} + \overrightarrow{BD}$$

Simplifions \vec{u} .

$$\vec{u} = \overrightarrow{AB} + \overrightarrow{DC} - \overrightarrow{AC} + \overrightarrow{BD}$$

$$= \overrightarrow{AB} + \overrightarrow{DC} + \overrightarrow{CA} + \overrightarrow{BD}$$

$$= \overrightarrow{AB} + \overrightarrow{BD} + \overrightarrow{DC} + \overrightarrow{CA}$$

$$= \overrightarrow{AA}$$

$$= \overrightarrow{0}$$

10 Simplifications de vecteurs

1°)
$$\vec{u} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$\vec{v} = \overrightarrow{AB} - \overrightarrow{AC}$$

$$\vec{v} = \overrightarrow{CA} + \overrightarrow{AB}$$

$$\vec{v} = \overrightarrow{CB}$$

$$\vec{u} = \overrightarrow{AB} + \overrightarrow{DC} - \overrightarrow{AC} + \overrightarrow{BC} \qquad \vec{v} = \overrightarrow{MN} + \overrightarrow{PM} + \overrightarrow{NP}$$

$$\vec{u} = \overrightarrow{AC} + \overrightarrow{DC} + \overrightarrow{CA} \qquad \vec{v} = \overrightarrow{MN} + \overrightarrow{NM}$$

$$\vec{u} = \overrightarrow{AC} + \overrightarrow{CA} + \overrightarrow{DC} \qquad \vec{v} = \vec{0}$$

$$\vec{u} = \overrightarrow{DC}$$

$$\overrightarrow{AM} = \overrightarrow{u} + \overrightarrow{v}$$

$$\overrightarrow{AM} = u + v$$

$$\overrightarrow{AN} = \overrightarrow{u} - \overrightarrow{v}$$

Figure de gauche :

11 Constructions de points

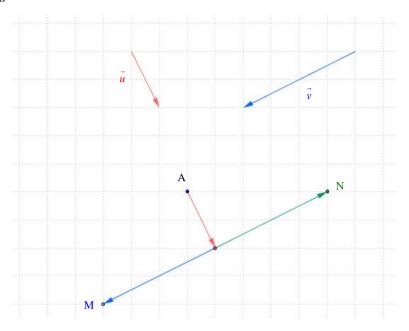


Figure de droite :

 $\overrightarrow{w} = \overrightarrow{MA} - \overrightarrow{MF} + \overrightarrow{FA}$

 $\overrightarrow{w} = \overrightarrow{MA} + \overrightarrow{FM} + \overrightarrow{FA}$

 $\overrightarrow{w} = \overrightarrow{FM} + \overrightarrow{MA} + \overrightarrow{FA}$

 $\overrightarrow{w} = \overrightarrow{AP} - \overrightarrow{AQ} + \overrightarrow{EQ} - \overrightarrow{EP}$

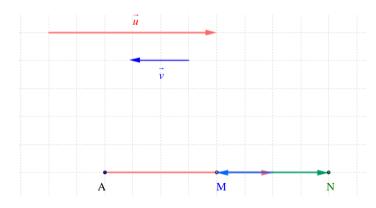
 $\overrightarrow{w} = \overrightarrow{AP} + \overrightarrow{QA} + \overrightarrow{EQ} + \overrightarrow{PE}$

 $\overrightarrow{w} = \overrightarrow{AP} + \overrightarrow{QA} + \overrightarrow{EQ} + \overrightarrow{PE}$

 $\overrightarrow{w} = \overrightarrow{FA} + \overrightarrow{FA}$ $\overrightarrow{w} = 2\overrightarrow{FA}$

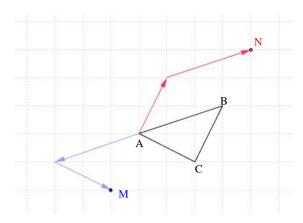
 $\overrightarrow{w} = \overrightarrow{AE} + \overrightarrow{EA}$

 $\vec{w} = \vec{0}$



12 Constructions de points

$$\overrightarrow{AM} = \overrightarrow{BA} - \overrightarrow{CA}$$
$$\overrightarrow{AN} = \overrightarrow{CB} + \overrightarrow{AB}$$

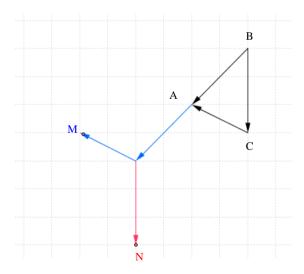


On peut remarquer que $\overrightarrow{AM} = \overrightarrow{BA} + \overrightarrow{AC}$ donc $\overrightarrow{AM} = \overrightarrow{BC}$ d'après la relation de Chasles.

13 Constructions de points

$$\overrightarrow{MA} = \overrightarrow{AB} + \overrightarrow{AC}$$
 soit $\overrightarrow{AM} = \overrightarrow{BA} + \overrightarrow{CA}$

$$\overrightarrow{NB} = \overrightarrow{AB} + \overrightarrow{CB}$$
 soit $\overrightarrow{BN} = \overrightarrow{BA} + \overrightarrow{BC}$

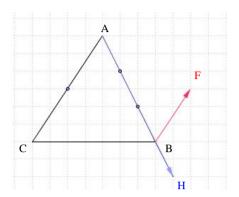


14 Construction de points

$$\overrightarrow{AE} = \frac{4}{3}\overrightarrow{AE}$$

$$\overrightarrow{AE} = \frac{4}{3} \overrightarrow{AB}$$

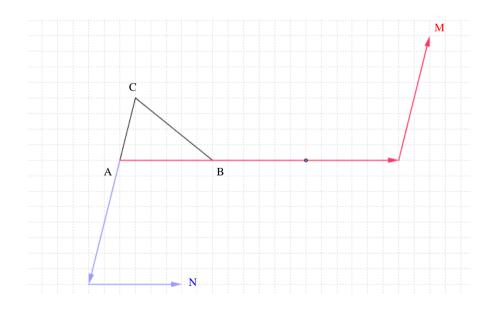
$$\overrightarrow{BF} = -\frac{1}{2} \overrightarrow{AC}$$



15 Constructions de points

$$\overrightarrow{AM} = 3\overrightarrow{AB} + 2\overrightarrow{AC}$$

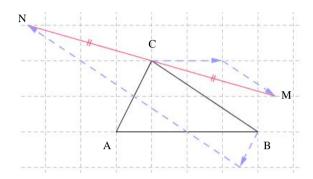
$$\overrightarrow{AN} = -2\overrightarrow{AC} + \overrightarrow{AB}$$



$$\overrightarrow{BM} = -\frac{1}{2}\overrightarrow{AC} + 2\overrightarrow{BC}$$

$$\overrightarrow{NC} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC}$$

1°)
$$\overrightarrow{CN} = \frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{BC}$$



2°)
$$\overrightarrow{CM} + \overrightarrow{CN} = \left(\overrightarrow{CB} + \overrightarrow{BM}\right) + \overrightarrow{CN}$$
 (relation de Chasles)

$$= \overrightarrow{CB} - \frac{1}{2}\overrightarrow{AC} + 2\overrightarrow{BC} + \frac{1}{2}\overrightarrow{AB} - \frac{1}{2}\overrightarrow{BC}$$

$$= \overrightarrow{CB} + 2\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BC} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$$

$$= -\overrightarrow{BC} + 2\overrightarrow{BC} - \frac{1}{2}\overrightarrow{BC} - \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$$

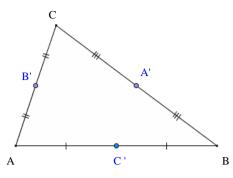
$$= \frac{1}{2}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CA} + \frac{1}{2}\overrightarrow{AB}$$

$$= \frac{1}{2}\left(\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB}\right)$$

$$= \overrightarrow{0}$$

On en déduit que C est le milieu du segment [MN].

17 Figure



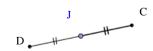
$$\begin{split} \overline{AA'} + \overline{BB'} + \overline{CC'} &= \overline{AB} + \overline{BA'} + \overline{BC} + \overline{CB'} + \overline{CA} + \overline{AC'}. \\ &= \underbrace{\left(\overline{AB} + \overline{BC} + \overline{CA}\right)}_{0} + \overline{BA'} + \overline{CB'} + \overline{AC'} \\ &= \underbrace{\frac{1}{2} \overline{BC} + \frac{1}{2} \overline{CA} + \frac{1}{2} \overline{AB}}_{0} \\ &= \underbrace{\frac{1}{2} \left(\overline{\underline{BC} + \overline{CA} + \overline{AB}}\right)}_{0} \end{split}$$

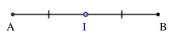
Donc
$$\overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'} = \overrightarrow{0}$$

On ajoute les égalités (1) et (2) membre à membre.

$$\overrightarrow{AD} + \overrightarrow{BC} = \left(\underbrace{\overrightarrow{AI} + \overrightarrow{BI}}_{\overrightarrow{0}} \right) + 2\overrightarrow{IJ} + \left(\underbrace{\overrightarrow{JC} + \overrightarrow{JD}}_{\overleftarrow{0}} \right)$$
car I milieu de [AB] car J milieu de [CD]

On obtient donc : $\overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{IJ}$





19 M: point défini par
$$2\overrightarrow{MA} + 3\overrightarrow{MB} = \overrightarrow{0}$$
 (1).

1°) Exprimons \overrightarrow{AM} en fonction de \overrightarrow{AB} .

(1) donne
$$2\overrightarrow{MA} + 3\left(\overrightarrow{MA} + \overrightarrow{AB}\right) = \overrightarrow{0}$$
 (relation de Chasles)
 $2\overrightarrow{MA} + 3\overrightarrow{MA} + 3\overrightarrow{AB} = \overrightarrow{0}$
 $5\overrightarrow{MA} + 3\overrightarrow{AB} = \overrightarrow{0}$
 $5\overrightarrow{MA} = -3\overrightarrow{AB}$
 $\overrightarrow{MA} = -\frac{3}{5}\overrightarrow{AB}$
 $\overrightarrow{AM} = \frac{3}{5}\overrightarrow{AB}$

2°) Construction de M.

Sur quadrillage

Sur papier blanc

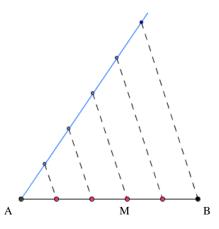
Utilisation d'une demi-droite auxiliaire d'origine A.

On reporte 5 fois la même longueur sur cette demi-droite (à l'aide d'un écartement de compas ou à l'aide du quadrillage). On obtient une division régulière de cette demi-droite.

On joint le dernier point marqué à B.

On trace les parallèles à cette droite.

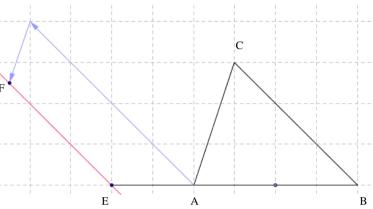
On obtient ainsi une division régulière du segment [AB] en cinq segments de même longueur.



20 Parallélisme de droites

ABC: triangle quelconque

1°)
$$\overrightarrow{AE} = \frac{1}{2}\overrightarrow{BA}$$
; $\overrightarrow{AF} = \frac{4}{3}\overrightarrow{BC} - \frac{1}{2}\overrightarrow{AC}$



2°) Démontrons que (EF) et (BC) sont parallèles.

$$\begin{aligned} \overrightarrow{EF} &= \overrightarrow{AF} - \overrightarrow{AE} \\ &= -\frac{1}{2} \overrightarrow{BA} + \frac{4}{3} \overrightarrow{BC} - \frac{1}{2} \overrightarrow{AC} \\ &= -\frac{1}{2} (\overrightarrow{BA} + \overrightarrow{AC}) + \frac{4}{3} \overrightarrow{BC} \\ &= -\frac{1}{2} \overrightarrow{BC} + \frac{4}{3} \overrightarrow{BC} \\ &= -\frac{5}{6} \overrightarrow{BC} \end{aligned}$$

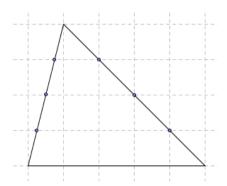
Les vecteurs \overrightarrow{EF} et \overrightarrow{BC} sont donc colinéaires. Par conséquent, (EF) // (BC).

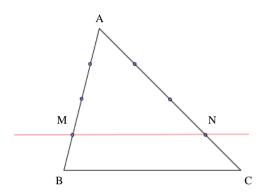
21 Parallélisme de droites

ABC un triangle quelconque

$$\overrightarrow{AM} = \frac{3}{4}\overrightarrow{AI}$$

$$\overrightarrow{AN} = \frac{3}{4}\overrightarrow{AO}$$





Démontrons que (MN) / / (BC).

$$\overrightarrow{MN} = \overrightarrow{AN} - \overrightarrow{AM}$$
 (relation de Chasles)

$$= \frac{3}{4}\overrightarrow{AC} - \frac{3}{4}\overrightarrow{AB}$$

$$= \frac{3}{4}(\overrightarrow{AC} - \overrightarrow{AB})$$

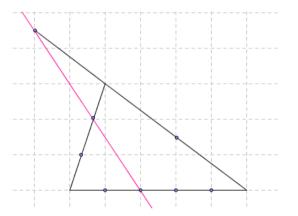
$$= \frac{3}{4}\overrightarrow{BC}$$

Les vecteurs \overrightarrow{MN} et \overrightarrow{BC} sont donc colinéaires. Par conséquent, (MN) // (BC).

22 Alignement de points



Utilisation du quadrillage pour faire la figure :



1°)
$$\overrightarrow{IJ} = \overrightarrow{IB} + \overrightarrow{BC} + \overrightarrow{CJ}$$
 (relation de Chasles avec deux points : B et C)

$$\overrightarrow{IJ} = -\frac{3}{2}\overrightarrow{BC} + \overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA}$$

$$\overrightarrow{IJ} = -\frac{1}{2}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA}$$

$$\overrightarrow{IJ} = -\frac{1}{2}(\overrightarrow{AC} - \overrightarrow{AB}) - \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{IJ} = \frac{1}{2}\overrightarrow{AB} - \frac{5}{6}\overrightarrow{AC}$$

 2°) On écrit : $\overrightarrow{IK} = \overrightarrow{IB} + \overrightarrow{BA} + \overrightarrow{AK}$.

$$\begin{split} \overrightarrow{IK} &= \overrightarrow{IB} + \overrightarrow{BA} + \overrightarrow{AK} \\ &= -\frac{3}{2} \overrightarrow{BC} + \overrightarrow{BA} + \frac{2}{5} \overrightarrow{AB} \\ &= -\frac{3}{2} \left(\overrightarrow{BA} + \overrightarrow{AC} \right) + \overrightarrow{BA} + \frac{2}{5} \overrightarrow{AB} \\ &= -\frac{3}{2} \overrightarrow{BA} - \frac{3}{2} \overrightarrow{AC} + \overrightarrow{BA} + \frac{2}{5} \overrightarrow{AB} \\ &= -\frac{3}{2} \overrightarrow{BA} - \frac{3}{2} \overrightarrow{AC} + \overrightarrow{BA} + \frac{2}{5} \overrightarrow{AB} \\ &= -\frac{3}{2} \overrightarrow{BA} - \frac{3}{2} \overrightarrow{AC} + \overrightarrow{BA} + \frac{2}{5} \overrightarrow{AB} \\ &= \frac{9}{10} \overrightarrow{AB} - \frac{3}{2} \overrightarrow{AC} \end{split}$$

$$\overrightarrow{IK} = \frac{9}{10}\overrightarrow{AB} - \frac{3}{2}\overrightarrow{AC}$$

3°) Démontrons que les points I, J, K sont alignés.

Méthode pour trouver au brouillon:

On écrit les coefficients des vecteurs \overrightarrow{AB} et \overrightarrow{AC} dans la décomposition des vecteurs \overrightarrow{IJ} et \overrightarrow{IK} .

	\overrightarrow{AB}	\overrightarrow{AC}
\overrightarrow{IJ}	$\frac{1}{2}$	$-\frac{5}{6}$
\overrightarrow{IK}	$\frac{2}{9}$ 10	$-\frac{3}{2}$

On vérifie que c'est un tableau de proportionnalité en calculant les quotients.

$$\frac{\frac{9}{10}}{\frac{1}{2}} = \frac{9}{10} \times 2 = \frac{9}{5}$$
$$\frac{-\frac{3}{2}}{-\frac{5}{6}} = -\frac{3}{2} \times \left(-\frac{6}{5}\right) = \frac{9}{5}$$

On en déduit que $\overrightarrow{IK} = \frac{9}{5}\overrightarrow{IJ}$.

Méthode au propre :

$$\overrightarrow{IK} = \frac{9}{10} \overrightarrow{AB} - \frac{3}{2} \overrightarrow{AC}$$

$$= \frac{3}{2} \left(\frac{3}{5} \overrightarrow{AB} - \overrightarrow{AC} \right)$$

$$= \frac{3}{2} \times \frac{3}{5} \left(\overrightarrow{AB} - \frac{5}{3} \overrightarrow{AC} \right)$$

$$= \frac{9}{5} \overrightarrow{IJ}$$

On a donc $\overrightarrow{IK} = \frac{9}{5}\overrightarrow{IJ}$.

Par suite les vecteurs, \overrightarrow{IJ} et \overrightarrow{IK} sont colinéaires. Comme ils ont un point commun, on en déduit que les points I, J, K sont alignés.